
Design of Knowledge Acquisition Subsystem with Mining Association Rules
from Big Data

Giang-Truong Nguyen, Van-Quyet Nguyen, Kyungbaek Kim

Department of Electronics and Computer Engineering
Chonnam National University

Gwangju, South Korea
truongnguyengiang.bk@gmail.com, quyetict@utehy.edu.vn, kyungbaekkim@jnu.ac.kr

Abstract
Expert system has played an important role in human’s

life for a long time. In order to establish an expert system,
knowledge acquisition is the process which should be
considered first. Regarding to this step, two of the most
demanding requests are: how to discover the knowledge
from a massive dataset, and how to organize them in a
temporary database properly in order to be reviewed
again. In this paper, we propose a design of a subsystem,
which acquires the knowledge from Big Data sources and
stores them following the rule form. Our work is
conducted with the support of a data mining technique
called association rules mining, which is executed through
parallel distributed environments: given data under file
form as input, outputs which includes rules representing
knowledge with their corresponding certainty factor are
gotten. Then all of these rules are stored in a relational
database, which could be queried out by knowledge
engineers to review them again before encoding them into
the knowledge base. By the experiments with real dataset,
it is confirmed that our proposed design could not only
acquire the knowledge from Big Data source in an
acceptable duration, but also handle well with the
querying out situation when a lot of rules are gotten.

Keywords: Big Data, Expert System, Association rules mining

I. Introduction

Expert systems [1] have attracted much attention in recent
decades. In the processes for establishing these systems,
knowledge acquisition subsystem plays a very important role:
it has the responsibility for acquiring knowledge from many
sources, then structuring and letting them to be rechecked
before encoding them into the knowledge base. The most
efficient source of data for acquiring the knowledge is from
human expert [7], which is supposed to cost not only much
time, but also money. Consequently, expert system maker
would want some alternative solutions which could acquire the
knowledge automatically without much cost like the human
expert source.

There have been a lot of researches regarding automating
orientation. Herskovits et al [8] proposed calculating entropy
value from the inputted database of cases to produce a belief
network. Leung et al [9] employed association rules mining in
incomplete information system. Those methods were proved to

be efficient years ago, but they could not be satisfying when
dealing with big volume data issue at this time.

Association rules mining has been used for acquiring
knowledge for a long time. The original work of this technique
was from the shopping baskets of the retainers: giving a
collection of transactions with their corresponding purchased
items, mining association rules is finding which items
customers could pick; which are considered as consequent;
after grabbing some ones known as antecedent. This mining
could only be conducted after the prior work is done: finding
the frequent itemsets; which are the set of items accompanying
together whose rate of appearances over the overall number of
transactions (a.k.a support) is larger than a given threshold
(which is also known as minimum support).

In this paper, we propose a design of knowledge acquisition
subsystem for expert system by using association rules mining,
which could be applied specifically on big dataset. Our work is
executed in 3 main processes. The first one is Raw Big Data
Processing, which will handle the raw data to get the so-called
transactions with their corresponding items. Afterward, the
association rules mining process will initially, with the input
minimum support, find all the frequent itemsets, which is the
basement for finding association rules. Finally, those results
will be stored by the rules Database, with a proper design
satisfying the possible large quantity exploding in the future.
By this proposed database, users can query and verify rules’
validity before applying them in their expert system.

II. Background

A. Expert System
Expert System is a kind of system which is used to support

making up decisions on some specific domains based on
human knowledge, which is discovered in the real life from
human experts or real data exploration. Fig. 1 describes an
Expert System architecture, which includes some components.
They could be more or fewer in other variants, but Fig. 1 is one
of the most typical one. In this architecture, the Knowledge
Acquisition subsystem gets the responsibility to accumulate
knowledge from Real Life Data or Human Experts. Afterwards,
knowledge is verified before being encoded into the
Knowledge Base. Users will interact with the Expert System
by sending requests to the component called User Interface.
From here, based on the knowledge accumulated in the
Knowledge Base component, the Inference component will try
to find the best suggestion for the requests from users and the
Explanation Component will explain why that suggestion is

94 page The International Conference on Smart Media & Applications SMA2017

chosen.

Fig. 1 Architecture of a typical Expert System

B. Association rules mining
In this technique, two entities should be considered: a set of

items I = {I1, I2…, In} and a collection of transaction T = {T1,
T2…, Tn} with each of them contains (some) independent
item(s). Mining the association rules includes 2 main tasks:
frequent itemsets finding and association rules finding. The
aim of the former is trying to get all the set of items whose rate
of appearance (support) is larger than a given threshold, which
is called minimum support (minsup). In order to do this work,
one of the most well-known methods is Apriori algorithm [2],
which employs a pruning technique to solve the problem. In
any levels of itemset length, it will find all the possible sets
which satisfy the minimum support requirements.
Subsequently, in the next levels, the itemsets, whose length is
1-longer than the previous level’s length, will have to contain
all subsets being the found frequent itemsets previously.
Apriori algorithm is very useful in the old days when parallel
computation [3] was not popular. However, it is not suitable
anymore those days because Apriori can only be conducted on
a single machine environment only.

 SON algorithm [4] described in Algorithm 1 is supposed to
work well on parallel environment because in the first pass it
divides the dataset into smaller non-overlapping fragments,
then sequentially on each of them finds the local frequent
itemsets, which will be aggregated together to become the
global frequent itemset candidates. In the next pass, these
found candidates are considered on the whole dataset to find
their overall appearances, which are used to decide if these
candidates are really frequent or not. Our work applies the
SON algorithm not on a single machine, but in a parallel
environment, specifically Hadoop [5].

After that, the association rules finding will continue the
work based on what has been found. Consider a frequent
itemset l and one of its subset a, the so-called confidence value
of any rule is calculated by:

If the confidence value of any rule is larger than a given
threshold, this rule is considered as association rule.

Algorithm 1: SON algorithm

Input: Set of items I = {I1, I2, …, In};

collection of transaction T= {ti , ti c I };

minimum support threshold minsup.

Output: itemsets whose support is larger than minsup
1. Dividing T into m parts
2. Initialize local_sets ← null; global_sets ← null

// local_sets: global frequent itemset candidates
// first passing

3. for i ← 1 to m
4. temp_local_sets←get_frequent_itemsets(i)
5. local_sets.add(temp_local_sets)

//second passing
6. for i ← 1 to m
7. part = get_part(T , i)
8. for j ← 1 to local_sets.length()
9. local_sets[j].quantity ← local_sets[j].quantity +

get_quantity(part , local_sets[j])

10. for i ← 1 to local_sets.length()
11. current_set ← local_sets[i]
12. support ← current_set.quantity() / T.length()
13. if (support > minsup)
14. global_sets.add(current_set)
15. return global_sets

Fig. 2 Big Data Platform for pre-processing and mining the rules

III. Design of Knowledge Acquisition subsystem

A. Overview of our knowledge acquisition subsystem on Big
Data platform

Our knowledge acquisition system uses 3 main processes for
acquiring knowledge. Initially, the data from file source is
pre-processed to get the transaction form with their items
accompanying together. Afterwards, those transactions data
will be handled to find the frequent itemsets first, which will be
the basement for finding the association rules. Finally, these
rules will be stored in the relational database.

In order to conduct these processes, we employ a Big Data
platform which has been introduced in our research before [6].
Fig. 2 describes our design of knowledge acquisition

SMA2017 The International Conference on Smart Media & Applications 95 page

subsystem on this platform, which is created on the basis of
Hadoop and modified from [6] to satisfy the aim of finding
knowledge.

This subsystem will get the raw data from External Services,
Sensors as well as Internal Data like csv, xls files. Those data,
after being some basic processes, will be stored in Hadoop
distributed file system (HDFS) with the support of a
component called MapReduce, which divides the whole
dataset into smaller parts, then execute on each of them.
Subsequently, pre-processing phase is conducted by
MapReduce component, which stores the transactions data in
HDFS. Then, the association rules mining phase will be
executed by the association rules mining component inside
Data Analysis, which reads the data from this storage and runs
the SON algorithm in the parallel environment to get the
results. Finally, they will be stored in MySQL database.

B. Raw Big Data Pre-processing
The aim of this component is getting the data, which is the

form of transactions with corresponding items accompanying
together, to mine the association rules. In the scope of this
paper, the input data is limited to file form, which contains data
about some domains whose knowledge is needed to be
extracted. Each input file has many rows, which stand for the
accumulated data. By manually analyzing the input data,
(some) field(s) can be possibly found, which could establish
unique objects with unique identities representing for unique
transactions. Afterwards, among other fields, one can be
picked to make the items data for each transaction. These fields
can be considered as transaction fields and item field
respectively. In section V, we include an example with real
dataset for getting the transaction data.

With the support of MapReduce, this work can be done
parallelly. The raw big data, after being stored in HDFS by
MapReduce, can be split into some smaller parts. Based on the
knowledge of the executor, the fields chosen for making
transaction identity and item name will be set. The first map
procedure will produce the pair <key, value> whose key is
gotten from transaction fields, and value is gotten from item
field. After the reduce procedure, all the item will be grouped
together with the same key, making the list of transactions with
corresponding items. The final result of this component is
stored in HDFS, which allows the next component to read and
process with MapReduce procedure.

C. Association rules mining
As mentioned before, our method is conducted based on

SON algorithm on the parallel computing environment with
Hadoop. In order to conduct this work, there should be 2
phases of MapReduce to handle 2 passes of the SON
algorithm.

In the first phase, the overall gotten list of transactions is
divided into many smaller non-overlapping parts, which are
handled by some mappers to find the local frequent itemsets on
each smaller part. This procedure’s output has the form <key,
value> whose key is the item’s name and value is 0 because
this phase is just used for finding the possible frequent
candidate, so its number of appearances need not to be
considered. After being processed by the reducer, the overall
global frequent itemset candidates are gotten.

Afterward, in the second MapReduce procedure, the list of
global frequent itemset candidates is employed, which is

assigned for each mapper. After the map procedure, the
appearances of each itemset of global frequent itemset
candidates on each smaller part will be gotten first, then after
the reduce phase, their overall appearances over the whole
dataset will be achieved. Based on this overall achievement,
the support of each global frequent itemset candidates can be
calculated, which decides which itemsets are frequent or not.

Finally, in order to accomplish the task of mining
association rules, based on the found frequent itemsets, the
rules will be gotten by calculating their confidence. In this step,
we follow the work mentioned in [4]: generating subset of each
frequent itemsets by each level of subset length decreasing. If
any rules containing (a) as antecedent and (l - a) as consequent
could not satisfy the minimum confidence requirement, all the
rules containing a’s subset asubset as antecedent and (l - asubset)
as consequent will be discarded without considering.

Fig. 3 Design of MySQL Database for storing association rules

D. Storing the archived rules in MySQL database
After getting all the association rules from the dataset, these

rules will be stored in the database. Specifically, we employ a
relational database known as MySQL. The design of the
database for storing achieved rules is described in Fig. 3.

As seen from Fig. 3, there are 3 tables to store the rules’
information. The first one is association_rules which stores
raw rule’s content raw_rule (the string format of the rules:
antecedent consequent), number of items in the consequent
conse_quanti, number of items in the antecedent ante_quanti
and rule’s confidence level level, which means the confidence
of the found rule. The other tables are antecedent and
consequent, which stores each individual item of antecedent
and consequent of the rules. In each rule, there could be some
items in the antecedent and some items in the consequent.

Because those rules will be later queried again to be
reviewed and inserted into the knowledge base, we create a
design which supports mainly for querying based on the
chosen items in the antecedent as well as consequent. With the
support of indexing function from MySQL, it would take users
less time for querying the wanted results, even when the
number of gotten rules explodes later.

V. Evaluation

We conducted our evaluation with a Hadoop cluster on 5
machines: one for master node and 4 for computing nodes.
Each machine has 4 CPU and 16 GB of RAM. The data set
used for testing is taken from agriculture data in Korea in 2015.
In this dataset, there are many rows, each of which have farms
information like their identity number, their grown products,
their grown area and income. Because a specific farm with a
unique identity number could have many grown products,
there could be many rows with the same identity number, but
different grown product. Consequently, farms’ identity
number and grown products are chosen as transaction field and

96 page The International Conference on Smart Media & Applications SMA2017

item field respectively. Moreover, in order to increase the
quality of the gotten rules, we only get the transactions from
farm whose income is larger than 10,000 thousand won. This
filter proves that the gotten rules are retrieved from good
sources.

Table 1: Evaluating for the pre-processing
Number

of records
Number of

gotten
transactions

(with income
condition)

Number of
gotten

transactions
(without
income

condition)

Executed
time (s)
(with

condition /
without

condition)
4,053,802 281,055 419,569 31/24
6,082,807 390,125 642,614 33/28
8,110,107 489,678 909,954 35/32

10,100,124 566,257 1,261,391 38/36
11,275,355 614,736 1,561,632 42/39

The first evaluation is conducted with pre-processing data.
The results for this evaluation is shown in Table 1. As seen
from this table, the executed time also increases when the
number of records increases. However, the increasing of
executed time is marginal: from 24 to 39 seconds without the
income condition, and from 31 to 42 seconds with the income
condition, while inputted records quantity is nearly doubled.

Fig. 4 Comparison between Brute algorithm and SON algorithm

conducted on Hadoop environment

Subsequently, another evaluation is made with the frequent
itemset finding phase, by comparing with an original method
called Brute-Force. In this one, each possible itemset is listed,
then their appearances are counted by looking at each
transaction. Both of our method and the original method are
conducted on proposed Hadoop environment. The result is
shown in Fig. 4. From this figure, it is observable that the
execution time of our method is always much lower than the
original method when the number of transactions increases.
The minimum support used for this case is 0.1.

Finally, the last evaluation is conducted with the queried
time when a search function is made. It is assumed that a user
wants to search some rules, and he will input some items, so
the result he wants are some rules which includes his chosen
items as antecedent. This evaluation is conducted with the
number of items in the antecedent increases, and nearly

300,000 gotten rules. As seen from Fig. 5, which is the result of
this evaluation, when the number of chosen items in the
antecedent increases, the queried time increase mildly, which
proves that our design of the database for storing the gotten
rules works properly.

Fig. 5 Queried time of rules searching

VI. Conclusion
In this paper, we have presented a design for the knowledge

acquisition subsystem, which is used for accumulating rules
for expert system. The raw big data is pre-processed to get the
data under transactions form with corresponding items; then
from this gotten data, association rules are gotten, which later
are stored in relation database with a proper design. Our future
work will focus on improving the performance for finding the
rules more quickly.

Acknowledgment
This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Science, ICT & Future
Planning(NRF-2017R1A2B4012559). This research was
supported by the MSIT (Ministry of Science and ICT), Korea,
under the ITRC (Information Technology Research Center)
support program (IITP-2017-2016-0-00314)

References
[1] Jackson, Peter. "Introduction to expert systems." (1986).
[2] MLA Agrawal, Rakesh, and Ramakrishnan Srikant. "Fast

algorithms for mining association rules." Proc. 20th int. conf.
very large data bases, VLDB. Vol. 1215. 1994.

[3] en.wikipedia.org/wiki/Parallel_computing
[4] Savasere, Ashok, Edward Robert Omiecinski, and Shamkant B.

Navathe. An efficient algorithm for mining association rules in
large databases. Georgia Institute of Technology, 1995.

[5] hadoop.apache.org/
[6] Van-Quyet, Nguyen, et al. "Design of a Platform for Collecting

and Analyzing Agricultural Big Data." Journal of Digital
Contents Society 18.1 (2017): 149-158. APA

[7] engineering.purdue.edu/~engelb/abe565/knowacq.htm
[8] Herskovits, Edward H., and Gregory F. Cooper. "Kutato: An

entropy-driven system for construction of probabilistic expert
systems from databases." arXiv preprint arXiv:1304.1088
(2013).

[9] Leung, Yee, Wei-Zhi Wu, and Wen-Xiu Zhang. "Knowledge
acquisition in incomplete information systems: a rough set
approach." European Journal of Operational Research 168.1
(2006): 164-180. APA

SMA2017 The International Conference on Smart Media & Applications 97 page

